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Abstroct

This paper describes applications of some high order
algorithms originally developed for structural dynamics
to this and other problems. In the linear case the large
step unconditionally stable algorithms are a useful alter-
native to modal analysis. For the accurate calculation of
impulsive and wave like response small step methods are
essential and these algorithms are also very suitable for
non-linear problems. lllustrative examples from vibrations,
flutter, non-linear wave propagation and the n-body pro-
blem are given.

I. Introduction

Most algorithms in common use for structural dynamics
applications use low order explicit or implicit interpo-
lation (1). In the algorithms described here (2) (3) (4) the
inertia force is interpolated as o Hermitian polynomial in
the time of degree 3, 5 or 7. Thus the 5th degree polyno~
mial, for example, interpolates the inertia force R
in terms of R,R, R, and R, R, R, ot the beginning
ond end of a time interval &, to t, . Two versions of
the algorithm are used. In the first, which has a rather

better truncation error, the velocity & and displacement
r are obtained from successive integrations of the
acceleration using the interpolation polynomial and its
first integral. In the second the some integration is used
to obtain the displacement from # B and R as to ob~
tain the velocity from R,R and R . This results in an
algorithm which is unconditionally stable for all inte-
gration time steps when applied to a linear oscillator (3}).

The first, or small step algorithm, is recommended for
impulsive load and wave problems and also for non-linear
problems. The second or large step algorithm is an excel-
lent alternative for modal analysis in linear systems and
is still applicable with arbitrary damping.

The properties of the algorithms are summarised in
TABLE 1 and 2. In TABLE 3 and Fig. 1 are given the
period elongations for the large step algorithms which
have no amplitude error for any time step. For comparison
are given curves for the well known Newmark and Wilson
(3) algorithms. The small step algorithms are a little more
accurate for small steps but become unstable when the
time step exceeds about half of the least period of the
dynamic system.
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is the operator

(2) = A (:'E) see Ref. (3)
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I1. Application of Small Step Algorithms

Each time step is solved iteratively by Jacobi type
iteration which is rapidly convergent for time steps very
little shorter than those required for stability of the algo-
rithm. It is unnecessary to form the complete stiffness
matrix, indeed, even for linear systems it is better to
avoid this when the system contains a very large number
(over 600) degrees of freedom. Three possible flow charts
are shown in Figs. 2,3 and 4 for linear and non-linear
oscillations. For more details on these diagrams see (2).
Some examples of the application of the small step algo-
rithms are given in the following figures. They concern
structural and non-structural examples. The achieved
accuracy is in each case very satisfying. See also (2),

4), (5).
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Fig 5 This example is a simple one degree of freedom
system consisting of a prestressed weightless rod
with a transversely vibrating mass at its centre. The
graph shows the relative error for various methods
in displacement as a function of the time step.See
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Fig 6 A transmitter tower of height 152.5 metres with
triangular cross section space frame structure
is supported by cables. It is analysed for wind load.
There are 737 truss members and 549 degrees of
freedom. As the bandwidth of the structural stiffness
matrix is quite small the problem could be handled
in core. The figure shows the displacements of two
sections of the tower under transient wind loading.

See (2)
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Fig 9 Non-linear material membrane under tensile step
end load. The structure is idealised with 348 TRIM 3
finite elements. The calculations are made for two
different values of Poisson’s ratio and no damping is
used. The graph shows the particle velocities of
edge after 1 msec. The computation was made with
the third degree algorithm.

Fig 11  Other n.body problem. An earth turns around a
central sun. A moon turns around the earth and a
comet passes earth and sun. (See (4)
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Fig. 10 N.Body problem. Eight equal masses turn around Fig 12 Dynamic response of cantilever beam with TRIM3

membrane idealisation. Incompressible ( V =4.0]
and nearly incompressible (Y = 0.9999).24 nodal
freedoms are reduced to 8 when the incompressi-
bility constraint is applied. Third degree algo-
rithm. See (5)

a central "sun" and influence each other
simultaneously. The computation was realised
with the fifth degree aigorithm and appeared
to be very exact. (See (4)
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Fig 13

Supported bar of Mooney type material subject
to a sinusoidal end loading. The data for the bar
are found in (5). The load is of amplitude 50
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Fig 14

units and period 2 msec with an initial tension
cycle. The bar is represented by 60 lumped mass
finite elements. In order to suppress high fre-
quency oscillations a velocity domping matrix
was assumed of 10-3 of the tangent stiffness
matrix at the beginning of each step. The curves
show the undamped and damped response at
various times

2ms 3ms

Lms 5ms

The same structure as Figure 13. The idealisation
is now made with 600 element bars. The damping
is 1076, 1t is interesting to note the influence

of the fineness of the discretization. See (5)
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Fig 15  Mooney material 600 element bar
Compressive step load. Undamped and damped
response at two different times.

1. Application of Large Step Algorithms

Because of the large step, direct solution (elimination,
triangularisation or matrix inversion) of each time step is
necessary.

Any linear vibrating system reduces to
Mr +Cr +« Kr=Ff (1)
ond the algorithms of TABLE 2 lead to an equation of the
form r ] [.—o]
Dﬂ(r"1 = D, Y W F (2)

where D, ,D, and F are glen in Figs. 16 and 17 for the
3rd and 5th degree algorithms.

Some applications are shown in the Figures 18 to 24.

For other explanations the user should also consult the
references.

Fig 16  Matrices for the first and second algorithms of
resolution of equation (2)

n=2, 4" Order Hermitian Polynomial of 379 Degree
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in one case, with a modal analysis using the DYNAN
package (7). The ‘exact’ solution in all problems is ob-
tained by the third degree conditionally stable algorithm
with a small time step.

Free vibration and dynamic loading of a beam
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Forced Oscillation of Beam

The dimensions of the beam which is divided into
twenty consistant mass cubic finite elements are given
in Figure 18, In the first example the beam is released
from the static deflection due to a central load of 500
newtons. The solution is found with the stable algorithms
(n= 2 and 3) and by the method of Wilson, using a time
step ranging over T/Tomin = 1,2,4,..., 64, 128. Note
that the maximum time interval corresponds to almost
exactly one-sixteenth of the fundamental period. In the
curves of Figure 18 are shown the relative errors in the
displacements at time corresponding to the maximum de-
flection of the ‘exact’solution after one complete
oscillation. The spectrum of the beam is very widely
spaced and the contribution of the first mode to the initial
static deflection is over 98 per cent of the total. Thus
engineering accuracy is obtained by all methods. The
small improvement of the fifth degree algorithm over the
third degree is due to the better representation of the
second and third modes. One sees that to achieve 0-1 per
cent accuracy the integration step is respectively 2,17,
75 Tomin for the Wilson, third degree and fifth degree
algorithms.



In Figure 19 are presented the relative errors in the re-
sponse of the beam to a 500 newton central load applied
over a time of 256 as a fifth degree polynomial.
The deflections and bending moments at the centre are
compared at the time corresponding fo the first maximum
of the ‘exact” solution. The maximum integration step is
one half of the time of application of the load. The form
of the load function is such that all methods integrate the
total impulse.

S A= lem
orce e
[Newton]| LU TR R A T
/[Newton]}
2000 | t= s (40
& £,
hT
L’Dmn Structure =
1500 |
| — Exact
[ S = Wilson =14 ¥+ = 2—

Present Method
5'" Degree (n ;3)]

1000
3? Degree (n=2)

xe
¢ 0

S00

40 Elements
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Bar with resonant loading

The bar which is divided into 40 lumped mass elements is
supported at one end and loaded with a sinusoidal force
of amplitude 500 newtons and of period equal to the fun-
damental Tomax . In Figure 20 the force along the bar
is shown after time of one period. The third and fifth
degree algorithms are applied with a integration step of
% Tomax and the Wilson algorithm with T =% Tomax.
Figure 21 shows the same example with the integration
step of & Tomax in all three methods. The increase

in accuracy with the use of the higher order algorithms
is much more evident than in the previous example be-
cause the modal frequencies are more clesely spaced.

Az lem?
Force <=
[Newton] 4] Woem = (1)
1 [Newton] } 17_
2000 . = 5 (220)
i
~ A
1 S A
(o
—'Jau- Struciure =
1500 .
x = Exact
by . x Wisen 3:=14 ;_01=J§

Present Method
o 5" Degree (n:=3)] 1 _ 1

« 37 Degree (n=2)) fovar 8

5004

—— - - - —————-
1 7 3 19 % N 40 Elements

Force along length of Bar at =
for a different time step.

Fig 21

Rel Ecror

Vibration of beam with damping

The damping matrix is taken as the sum of parts pro-
portional to the stiffness and mass matrices, Thus
C = (—x_M + 53 K
where & = 10 and B= 107,

The beam is released from static equilibrium under a
central load and in Figure 22 are plotted the errors in
the deflection at the exact solution time of a complete
oscillation,
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Fig 23  Forced Oscillation of a Square Clamped Plate

Clamped plate with central transient logd

The plate whose dimensions are given in Figure 23
is idealized as 32 TUBA 6 finite elements . A central
load is represented by two fifth degree polynomials
applied over a total time of Tomax /5 . The deflections
at the centre are compared at the time of the first
maximum defined in Figure 23. It will be noticed that the
Wilson method gives 1 per cent error even when
The same time step gives only 0-002 per cent error in
the third degree algorithm ( © = 2) and to reach 1 per
cent error a time step of FTomin s required. Also in
the Figure are the errors of a modal anolysis by the
DYNAN method &5) using 10, 20,40 and 60 modes of a
total of 106 modes.



Flutter Problem

Another example studied with the 3rd order algorithm
is the behaviour of a triangular plate immersed in a
supersonic flow. The plate clamped at one of its edges
is represented by a TUBA 6 finite element. The speed is
sought for which the plate will start to flutter. Figure 24
shows that it will happen for a Mach number of 2.80. The

sensibility of the vibration with the Mach number is clearly

demonstrated by the curve obtained for @ Mach number of
2.85 which gives rapid divergence. The study was made
for different time steps. The curves are obtained for time
step equal to about 1/25 of the resulting flutter period.
For a time step 1/3 of this last period, the results were
still useful from a practical point of view: for a Mach
number equal to 2. 80 it was possible to notice flutter;

for 2.85 divergence.
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Displacement of node 3 (in dm) as function
of the time for different Mach numbers.
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